Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains.

نویسندگان

  • Carl J Balibar
  • Frédéric H Vaillancourt
  • Christopher T Walsh
چکیده

The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amino acids and epimerize them as the aminoacyl-S-pantetheinyl T domain intermediates before the next downstream condensation. The condensation (C) domains are shown to have (D)C(L) chirality in peptide bond formation. The upstream aminoacyl/peptidyl moiety is epimerized before condensation only when the condensation domains are simultaneously presented with the L-aminoacyl-S-pantetheinyl acceptor. These (D)C(L) catalysts are dual function condensation/epimerization domains that can be predicted by bioinformatics analysis to be responsible for incorporation of all D residues in arthrofactin and of D residues in syringomycin, syringopeptin, and ramoplanin synthetases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus.

The biosynthetic gene cluster for the 17 aa peptide antibiotic enduracidin has been cloned and sequenced from Streptomyces fungicidicus ATCC 21013. The 84 kb gene cluster contains 25 ORFs and is located within a 116 kb genetic locus that was fully sequenced. Targeted disruption of non-ribosomal peptide synthetase (NRPS) genes in the cluster abolished enduracidin production and confirmed functio...

متن کامل

Peptide Epimerization Machineries Found in Microorganisms

D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP-N-acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently iden...

متن کامل

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery

Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs), they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimeri...

متن کامل

In vivo characterization of tandem C-terminal thioesterase domains in arthrofactin synthetase.

Macrocyclization of a peptide or a lipopeptide occurs at the last step of synthesis and is usually catalyzed by a single C-terminal thioesterase (Te) domain. Arthrofactin synthetase (Arf) from Pseudomonas sp. MIS38 represents a novel type of nonribosomal peptide synthetase that contains unique tandem C-terminal Te domains, ArfC_Te1 and ArfC_Te2. In order to analyze their function in vivo, site-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2005